

BRIEF INFORMATION

Locking actuator

\rightarrow Electrical locking/ unlocking, space-saving, with or without micro switch
\rightarrow Compact, space-saving design
\rightarrow Electromotive reset or automatic (non-electric) reset
\rightarrow Easy to mount thanks to snap-fit mounting
\rightarrow Splash-proof
\rightarrow With or without micro switch
\rightarrow Explosion report for tank modules

PRODUCT FEATURES

Application

The extremely space-saving design of this actuator makes it especially suitable for locking and unlocking applications in dry and wet areas (also via remote control, for example) where there is only limited space available.

Examples include:
\rightarrow Tank modules
\rightarrow Service flaps
\rightarrow Glove compartments
\rightarrow Locking of charging plugs (e-mobility)

PRODUCT FEATURES

Design and function

When a voltage is applied, the motor integrated in the electromotive actuator moves the locking lever attached to the motor shaft.

There are two product variants available in the product range. The first variant of the actuator with electrical locking and unlocking function is particularly suitable for traditional applications, where the locking lever locks a hinged arm attached to the locking system by applying a voltage and then unlocks it by reversing the voltage polarity. The stability of the open/closed locking positions is achieved by the motor being short-circuited following successful triggering. The position of the locking element can also be defined via an integrated micro switch.

The second actuator variant has a return spring and a micro switch integrated. The micro switch is actuated by a slight movement of the locking lever, e.g. by pressing a service flap. Current is then applied to the actuator via a control unit. This makes the actuator locking lever retract completely, leaving the closing system open and triggering the spring-loaded opening of the service flap. The actuator is then switched off and the integrated return spring causes the locking lever to return to the locking position without the use of any current. In order to lock the service flap, this flap is pushed closed when the hinged arm of the service flap snaps into the actuator's locking lever.

TECHNICAL DETAILS

Technical data	
Article number	6NW 011 122-011/017
Function	Electrical locking/unlocking, space-saving, electrical open and return rotation
Weight	60 g
Rated voltage	12 V
Voltage range	9-15.5 V
Maximum current consumption (stall current)	$\leq 3.2 \mathrm{~A}$
No-load/ idling current	$\leq 2.0 \mathrm{~A}$
Locking lever pulling force	$>75 \mathrm{~N}$ (after lifetime > 50 N)
Locking lever breaking force	$\geq 300 \mathrm{~N}$
Functional angle	$\leq 78^{\circ}$
Actuating time for 78° via functional angle ${ }^{1 \text { 1 }}$	$40 \mathrm{~ms}<\mathrm{t}<200 \mathrm{~ms}$
Triggering time	$0.2 \mathrm{~s}<\mathrm{t}<10 \mathrm{~s}$
Minimum switch on-time	$\mathrm{t}_{\text {on, min }}=200 \mathrm{~ms}$
Maximum switch on-time	$\mathrm{t}_{\text {on, } \max }=10 \mathrm{~s}$
Breaking time	$8 \times \mathrm{t}_{\text {on }}$
Thermal overload protection	Not available
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Lifetime ${ }^{2)}$	100,000 cycles
Conducted electromagnetic interference	DIN ISO 7637, SAE J1113-42
Interference suppression CISPR 25, SAE J-1113-41	Intensity level $1+10 \mathrm{~dB} \mu \mathrm{~V}$
End position stability with motor short circuit	$\leq 6^{\circ}$
Protection class	IP 5K4
Salt spray test in accordance with DIN 50021 SS	96 h
Vibration resistance in accordance with IEC 68-2-64	2.7 g
Housing material	PP-GF30
Sealing ring	NBR 70 Shore A
Locking lever material	PAA GF60
Resistant to	Petrol, diesel, biodiesel, ozone
Pin coating	Galvanically tin-plated
Connector	Hirschmann, 3-pin
Mating connector ${ }^{3)}$	3-pin MLK coupling ELA 872-858-541

${ }^{1)}$ Over the operating voltage and temperature range.
${ }^{2)}$ One switching cycle equals one open and return rotation. $0,7 \mathrm{~s}$ on; 14 s off (reverse voltage);
$0,7 \mathrm{~s}$ on; 14 s off (reverse voltage)
${ }^{3)}$ These accessories are not included in the scope of delivery. Available from Hirschmann Automotive.

Technical drawing

Pin assignment/electrical connection

Hirschmann connector, 3-pin MLK

Unlocking central locking system

Locking central locking system

$+$
-
+

TECHNICAL DETAILS

Technical data			
Article number	6NW 011 122-021/027	6NW 011 122-031/037	6NW 011 122-051/-057
Function	Electrical locking / unlocking, space-saving with micro switch, electrical open and return rotation	Electrical locking / unlocking, space-saving, electrical open and return rotation with micro switch, without operating and locking elements	Electrical locking / unlocking, space-saving, electrical open and return rotation with micro switch, without locking element, with operating element
Weight		60 g	
Rated voltage		12 V	
Voltage range		$9-15.5 \mathrm{~V}$	
Maximum current consumption (stall current)		$\leq 2.4 \mathrm{~A}$	
No-load/idling current		$\leq 1.0 \mathrm{~A}$	
Locking lever pulling force		$\geq 75 \mathrm{~N}$	
Locking lever breaking force		$\geq 300 \mathrm{~N}$	
Functional angle		$\leq 78^{\circ}$	
Actuating time for 78° via functional angle ${ }^{1)}$		$40 \mathrm{~ms}<\mathrm{t}<200 \mathrm{~ms}$	
Triggering time		$0.2 \mathrm{~s}<\mathrm{t}<10 \mathrm{~s}$	
Minimum switch on-time		$\mathrm{t}_{\mathrm{or}, \text { min }}=200 \mathrm{~ms}$	
Maximum switch on-time		$\mathrm{t}_{\mathrm{on} \text {, max }}=10 \mathrm{~s}$	
Breaking time		$8 \times \mathrm{t}_{\text {on }}$	
Thermal overload protection		Not available	
Operating temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$	
Lifetime ${ }^{2)}$		60,000 cycles	
Conducted electromagnetic interference		Intensity level 2	
Interference suppression CISPR 25, SAE J-1113-41		$\begin{aligned} & \qquad 18 \mathrm{~mm} \\ & \text { Intensity level } 1+10 \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	
Micro switch switching angle		8° to 18°	
End position stability with motor short circuit		$\leq 6^{\circ}$	
Protection class		IP 5K4	
Salt spray test in accordance with DIN 50021 SS		96 h	
Vibration resistance in accordance with IEC 68-2-64		2.7 g	
Housing material		PP-GF30	
Sealing ring		NBR 70 Shore A black	
Locking lever material		PAA GF60	
Resistant to		Petrol, diesel, biodiesel, ozone	
Pin coating		Galvanically tin-plated	
Connector		Hirschmann, 3-pin	
Mating connector ${ }^{3}$)		-in MLK coupling ELA 872-858-.	
${ }^{1)}$ Over the operating voltage and temperature range ${ }^{2)}$ One switching cycle equals one open and return ro 0,7 s on; 14 s off (reverse voltage); 0,7 s on; 14 s off (reverse voltage)	on.		

Technical drawing

6NW 011 122-051

6NW 011 122-027

6NW 011 122-031

Pin assignment/ electrical connection

Hirschmann connector, 3-pin MLK

Unlocking
Locking

TECHNICAL DETAILS

Technical data	
Article number	6NW 011 122-041/047
Function	Electrical locking/unlocking, space-saving with micro switch, electrical open rotation, return rotation via return spring, with soft-touch button
Weight	60 g
Rated voltage	12 V
Voltage range	9-15.5 V
Maximum current consumption (stall current)	$\leq 4.0 \mathrm{~A}$
No-load/ idling current	$\leq 2.0 \mathrm{~A}$
Locking lever pulling force	75 N
Locking lever breaking force	300 N
Micro switch triggering force	$\leq 24 \mathrm{~N}$
Functional angle	$\leq 78^{\circ}$
Actuating time for 78° via functional angle ${ }^{1 \text { 1 }}$	45 ms < t < 220 ms
Triggering time	$0.3 \mathrm{~s}<\mathrm{t}<4 \mathrm{~s}$
Minimum switch on-time	$\mathrm{t}_{\mathrm{on}, \text { min }}=300 \mathrm{~ms}$
Maximum switch on-time	$\mathrm{t}_{\text {on, } \text { max }}=4 \mathrm{~s}$
Breaking time	$20 \times \mathrm{t}_{\text {on }}$
Thermal overload protection	Not available
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Lifetime ${ }^{2)}$	10,000 cycles
Conducted electromagnetic interference	DIN ISO 7637, SAE J1113-42
Interference suppression CISPR 25, SAE J-1113-41	Intensity level $1+10 \mathrm{~dB} \mu \mathrm{~V}$
Micro switch switching angle	$8^{\circ}-18^{\circ}$
End position stability with motor short circuit	$\leq 6^{\circ}$
Protection class	IP 5K4
Salt spray test in accordance with DIN 50021 SS	96 h
Vibration resistance in accordance with IEC 68-2-64	2.7 g
Housing material	PP-GF30
Sealing ring	NBR 70 Shore A
Locking lever material	PAA GF60
Resistant to	Petrol, diesel, biodiesel, ozone
Pin coating	CuSn6, bronze plate, galvanically tin-plated
Connector	Hirschmann, 3-pin
Mating connector ${ }^{3)}$	3-pin MLK coupling ELA 872-858-541

${ }^{1)}$ Over the operating voltage and temperature range.
${ }^{2)}$ One switching cycle equals one open and return rotation. $0,7 \mathrm{~s}$ on; 14 s off (reverse voltage); $0,7 \mathrm{~s}$ on; 14 s off (reverse voltage)
${ }^{3}$) These accessories are not included in the scope of delivery.
Available from Hirschmann Automotive.

Technical drawing

Pin assignment/electrical connection

Hirschmann connector, 3-pin MLK

Softtouch unlocking
Softtouch locking

$+$
$0 \quad 0$

Switching process function sequence

Detection time "OPEN"

Description
Minimum period of time that the operator has to hold the operating element depressed for opening to take place.

Dead time

Description:
Time between switch change to [0] and activation of the motor control [1] when an opening process is initiated.

Explanation

On the electronic side, there occurs a system reaction time comprising switch debouncing and the system runtime. This can result in a delay of up to 70 ms , which then extends the non-parameterisable (actual) dead time of the opening process.

Detection time "CLOSED"

Description
Minimum time that the application
has to be closed before a new opening process can be initiated by the operator.

Explanation:
When the application is open, the switch signal is active [1]. As soon as the operator closes the application, the switch signal changes to inactive [0]. The "CLOSED" detection time starts to run when the switch is set to inactive [0]. Two instances are possible when closing (see case studies).

Case studies

Case 1:
The operator does not press down to the end stop when closing the application. The signal changes from "Switch active" [1] to "Switch not active" [0] and the detection time "CLOSED" starts. As soon as the preset time has expired, the application can be reopened.

Case 2:
When closing the application, the operator presses down to the end stop. This means that the signal first changes from "Switch active" [1] to "Switch not active" $[0]$ and the "CLOSED" detection time starts. When the operator presses down again to the end stop, the signal changes back to "Switch active" [1] and the detection time "CLOSED" which has not yet expired is reset. As soon as the operator releases the application, the signal changes to "Switch not active" [0] and the "CLOSED" detection time starts again.

Electrical open and return rotation, with micro switch, with operating element, without locking element

No
6NW 011 122-051 6NW 011 122-057

1

