BRIEF INFORMATION Redundant Sensors (double sensors)

\rightarrow High precision due to internal 14 bit resolution
\rightarrow High thermal stability and linearity
\rightarrow High insensitivity to magnetic fields
\rightarrow Zero position can be individually programmed
\rightarrow Various connection elements available

PRODUCT FEATURES

Application

The CIPOS ${ }^{\circledR}$-type angular position sensors (contactless inductive position sensors) are designed for many different applications to measure angles accurately and reliably even in tough environments. Their insensitivity to magnetic fields and their high level of temperature stability in particular are the characteristic qualities of the CIPOS ${ }^{\circledR}$ technology used in all angular position sensors. Angles are measured inductively using a contactless and thus wear-resistant method. This guarantees a high degree of measurement accuracy throughout the entire life of the sensor.

The redundant sensors (double sensors) are specially designed for failure detection, thus improving the reliability of the overall system.

Angular position sensors
Double sensors (redundant angle measurement for safety-critical applications)
Part number 6PD 009 583-001

TECHNICAL DATA	
Angle range	-30° to $+30^{\circ}$
Mechanical angle range	unlimited (full 360° circle)
Supply voltage	$5 \mathrm{~V} \pm 10 \%$ or $9-32 \mathrm{~V}$
"Crossed Scale" output signal	
Power Supply	$\mathrm{U}_{5} 5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 1} 0.5-4.5 \mathrm{~V}$ ratiometric
	Output $U_{\text {out 2 }} 4.5-0.5 \mathrm{~V}$ ratiometric
Power Supply	$\mathrm{U}_{\mathrm{s}} 9-32 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out }} 10.5-4.5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$
Resolution	$0.06{ }^{\circ}$
Linearity error including temperature drift	$\pm 0.3^{\circ}$
Current consumption	$<15 \mathrm{~mA}$
Max. current (analogue output)	$<2 \mathrm{~mA}$
Casing type	B
Zero position	$0^{\circ} / 120^{\circ} / 240^{\circ}$
Lever arm	50 mm , bush
Protection class	IP 6K9K
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lifetime	5 million cycles
Polarity reversal protection	none, mechanical protection only
Mating connector ${ }^{11}$	1394416-1
Pin coating	Sn

${ }^{1)}$ This accessory is not included. Available from TE Connectivity.

TECHNICAL DRAWING

PIN ASSIGNMENT FOR CASING TYPE B

Power supply with $5 \mathrm{~V} \mathrm{DC}^{2)}$
Pin 1: 5 V DC sensor 2
Pin 2: Output $U_{\text {out }} 10.5-4.5 \mathrm{~V}$ ratiometric
Pin 3: not assigned
Pin 4: 5 V DC sensor 1
Pin 5: Output $U_{\text {out }} 4.5-0.5 \mathrm{~V}$ ratiometric
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor 1
${ }^{2)}$ The power supply (pin 1 and pin 4) and the ground supply (pin 7 and pin 8) can be bridged externally (e.g. in the mating connector) in order to reduce the number of cables.

Power supply with 9-32 V DC ${ }^{3}$
Pin 1: Bridge to pin 4 (external)
Pin 2: Output U $0.5-4.5 \mathrm{~V}$
Pin 3: 9-32 V DC sensor 1 and 2
Pin 4: Bridge to pin 1 (external)
Pin 5: Output $U_{\text {out 2 }} 4.5-0.5 \mathrm{~V}$
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor 1
${ }^{3)}$ The bridge between pin 1 and pin 4 must be set up externally (e.g. in the mating connector). The power supply (pin 7 and pin 8) can be bridged externally (e. g. in the mating connector) in order to reduce the number of cables.

CHARACTERISTIC CURVE OF THE ROTATION ANGLE SENSOR

The characteristic curve of the angular position sensor repeats every 120°. The sensor does not therefore have to be installed in the mounting position shown, but can be installed at any offset angle that is a multiple of 120°. This will not affect the behaviour of the connected system in any way. The measuring angle range is 60°. If it is exceeded by up to 30°, the output signal remains at the limit value of the measuring range. If exceeded further, the next section of the characteristic curve is applied. The resulting measuring ranges and zero positions are shown on the graph. The segments of the circle shown in grey represent the angles that cannot be measured.

Ratiometric output signal $\mathrm{U}_{\text {out } 1}$ with power supply 5 V

Output signal $U_{\text {out } 2}=100 \%-U_{\text {out } 1} / \mathrm{Us}[\%]$ (opposite curve)

Absolute output signal $\mathrm{U}_{\text {out }} 1$ with power supply 9-32 V

Output signal $\mathrm{U}_{\text {out } 2}=5 \mathrm{~V}-\mathrm{U}_{\text {out } 1}[\mathrm{~V}]$ (opposite curve)

Angular position sensors
Double sensors (redundant angle measurement for safety-critical applications)
Part number 6PD 009 583-011

TECHNICAL DATA	
Angle range	-54° to $+54^{\circ}$
Mechanical angle range	unlimited (full 360° circle)
Supply voltage	Us $5 \mathrm{~V} \pm 10 \%$ or $9-32 \mathrm{~V}$
"Crossed Scale" output signal	
Power Supply	$\mathrm{Us}_{5} 5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 1} 0.5-4.5 \mathrm{~V}$ ratiometric
	Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$ ratiometric
Power Supply	$\mathrm{U}_{5} 9-32 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out }} 0.5-4.5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out2 }} 2.5-0.5 \mathrm{~V}$
Resolution	$0.06{ }^{\circ}$
Linearity error including temperature drift	$\pm 0.3^{\circ}$
Current consumption	$<15 \mathrm{~mA}$
Max. current (analogue output)	$<2 \mathrm{~mA}$
Casing type	B
Zero position	$0^{\circ} / 120^{\circ} / 240^{\circ}$
Lever arm	50 mm , bush
Protection class	IP 6K9K
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lifetime	5 million cycles
Polarity reversal protection	none, mechanical protection only
Mating connector ${ }^{11}$	1394416-1
Pin coating	Sn

${ }^{1)}$ This accessory is not included. Available from TE Connectivity.

TECHNICAL DRAWING

PIN ASSIGNMENT FOR CASING TYPE B

Power supply with $5 \mathrm{~V} \mathrm{DC}^{2)}$

Pin 1:5V DC sensor 2
Pin 2: Output $U_{\text {out }} 10.5-4.5 \mathrm{~V}$ ratiometric
Pin 3: not assigned
Pin 4: 5 V DC sensor 1
Pin 5: Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$ ratiometric
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor
${ }^{2)}$ The power supply (pin 1 and pin 4) and the ground supply (pin 7 and pin 8) can be bridged externally (e.g. in the mating connector) in order to reduce the number of cables.

Power supply with 9-32 $\mathrm{VDC}^{3)}$
Pin 1: Bridge to pin 4 (external)
Pin 2: Output U $0.5-4.5 \mathrm{~V}$
Pin 3: 9-32 V DC sensor 1 and 2
Pin 4: Bridge to pin 1 (external)
Pin 5: Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor 1
${ }^{3)}$ The bridge between pin 1 and pin 4 must be set up externally (e.g. in the mating connector). The power supply (pin 7 and pin 8) can be bridged externally (e. g. in the mating connector) in order to reduce the number of cables.

CHARACTERISTIC CURVE OF THE ROTATION ANGLE SENSOR

The characteristic curve of the angular position sensor repeats every 120°. The sensor does not therefore have to be installed in the mounting position shown, but can be installed at any offset angle that is a multiple of 120°. This will not affect the behaviour of the connected system in any way. The measuring angle range is 108°. If it is exceeded by up to 6°, the output signal remains at the limit value of the measuring range. If exceeded further, the next section of the characteristic curve is applied. The resulting measuring ranges and zero positions are shown on the graph. The segments of the circle shown in grey represent the angles that cannot be measured.

Ratiometric output signal $\mathrm{U}_{\text {out } 1}$ with power supply 5 V

Output signal $U_{\text {out } 2}=100 \%-U_{\text {out } 1} /$ Us [\%] (opposite curve)

Absolute output signal $\mathrm{U}_{\text {out } 1}$ with power supply 9-32 V

Output signal $\mathrm{U}_{\text {out } 2}=5 \mathrm{~V}-\mathrm{U}_{\text {out } 1}[\mathrm{~V}]$ (opposite curve)

For illustrative purposes only

TECHNICAL DATA	
Angle range	-54° to $+54^{\circ}$
Mechanical angle range	unlimited (full 360° circle)
Supply voltage	Us $5 \mathrm{~V} \pm 10 \%$ or $9-32 \mathrm{~V}$
"Crossed Scale" output signal	
Power Supply	$\mathrm{U}_{5} 5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 1} 0.5-4.5 \mathrm{~V}$ ratiometric
	Output $U_{\text {out 2 }} 4.5-0.5 \mathrm{~V}$ ratiometric
Power Supply	$\mathrm{U}_{\mathrm{s}} 9-32 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out }} 10.5-4.5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$
Resolution	$0.06{ }^{\circ}$
Linearity error including temperature drift	$\pm 0.3^{\circ}$
Current consumption	$<15 \mathrm{~mA}$
Max. current (analogue output)	$<2 \mathrm{~mA}$
Casing type	B
Zero position	$0^{\circ} / 120^{\circ} / 240^{\circ}$
Lever arm	70 mm , bush
Protection class	IP 6K9K
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lifetime	5 million cycles
Polarity reversal protection	none, mechanical protection only
Mating connector ${ }^{11}$	1394416-1
Pin coating	Sn

${ }^{1)}$ This accessory is not included. Available from TE Connectivity.

TECHNICAL DRAWING

06.6

Angular position sensors
Double sensors (redundant angle measurement for safety-critical applications)
Part number 6PD 009 580-017

PIN ASSIGNMENT FOR CASING TYPE B

Power supply with $5 \mathrm{~V} \mathrm{DC}^{2}$
Pin 1:5V DC sensor 2
Pin 2: Output $U_{\text {out }} 0.5-4.5 \mathrm{~V}$ ratiometric
Pin 3: not assigned
Pin 4: 5 V DC sensor 1
Pin 5: Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$ ratiometric
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor
${ }^{2)}$ The power supply (pin 1 and pin 4) and the ground supply (pin 7 and pin 8) can be bridged externally (e.g. in the mating connector) in order to reduce the number of cables.

Power supply with 9-32 $\mathrm{VDC}^{3)}$
Pin 1: Bridge to pin 4 (external)
Pin 2: Output U $0.5-4.5 \mathrm{~V}$
Pin 3: 9-32 V DC sensor 1 and 2
Pin 4: Bridge to pin 1 (external)
Pin 5: Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor 1
${ }^{3}$) Pin 1 and pin 4 must be bridged externally (e.g. in the mating connector). The ground supply lines (pin 7 and pin 8) can be bridged externally (e.g. in the mating connector) to reduce the number of wires.

CHARACTERISTIC CURVE OF THE ROTATION
 ANGLE SENSOR

The characteristic curve of the angular position sensor repeats every 120°. The sensor does not therefore have to be installed in the mounting position shown, but can be installed at any offset angle that is a multiple of 120°. This will not affect the behaviour of the connected system in any way. The measuring angle range is 108°. If it is exceeded by up to 6°, the output signal remains at the limit value of the measuring range. If exceeded further, the next section of the characteristic curve is applied. The resulting measuring ranges and zero positions are shown on the graph. The segments of the circle shown in grey represent the angles that cannot be measured.

Ratiometric output signal $U_{\text {out }} 1$ with power supply 5 V

Output signal $U_{\text {out } 2}=100 \%-U_{\text {out } 1} / \mathrm{Us}[\%]$ (opposite curve)

Absolute output signal $U_{\text {out } 1}$ with 9 V to 32 V supply voltage

Output signal $\mathrm{U}_{\text {out 2 }}=5 \mathrm{~V}-\mathrm{U}_{\text {out } 1}[\mathrm{~V}]$ (opposite curve)

Angular position sensors
Double sensors (redundant angle measurement for safety-critical applications)
Part number 6PD 009 584-017

TECHNICAL DATA	
Angle range	-54° to $+54^{\circ}$
Mechanical angle range	unlimited (full 360° circle)
Supply voltage	Us $5 \mathrm{~V} \pm 10 \%$ or $9-32 \mathrm{~V}$
"Crossed Scale" output signal	
Power Supply	$\mathrm{Us}_{5} 5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 1} 0.5-4.5 \mathrm{~V}$ ratiometric
	Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$ ratiometric
Power Supply	$\mathrm{U}_{5} 9-32 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out }} 10.5-4.5 \mathrm{~V}$
	Output $\mathrm{U}_{\text {out } 2} 4.5-0.5 \mathrm{~V}$
Resolution	$0.06{ }^{\circ}$
Linearity error including temperature drift	$\pm 0.3^{\circ}$
Current consumption	$<15 \mathrm{~mA}$
Max. current (analogue output)	$<2 \mathrm{~mA}$
Casing type	B
Zero position	$0^{\circ} / 120^{\circ} / 240^{\circ}$
Lever arm	90 mm , ball, top
Protection class	IP 6K9K
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lifetime	5 million cycles
Polarity reversal protection	none, mechanical protection only
Mating connector ${ }^{1}$	1394416-1
Pin coating	Sn

1) This accessory is not included. Available from TE Connectivity.

TECHNICAL DRAWING

06.6

PIN ASSIGNMENT FOR CASING TYPE B

Pin 1:5VDC sensor 2
Pin 3: not assigned
Pin 4: 5 V DC sensor 1
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor 1

Power supply with 5 V DC ${ }^{2}$
Pin 2: Output $U_{\text {out }} 0.5-4.5 \mathrm{~V}$ ratiometric

Pin 5: Output $\mathrm{U}_{\text {out 2 }}$ 4.5-0.5 V ratiometric
${ }^{2)}$ The power supply (pin 1 and pin 4) and the ground supply (pin 7 and pin 8) can be bridged externally (e.g. in the mating connector) in order to reduce the number of cables.

Power supply with 9-32 V DC ${ }^{3)}$
Pin 1: Bridge to pin 4 (external)
Pin 2: Output U $0.5-4.5 \mathrm{~V}$
Pin 3: 9-32V DC sensor 1 and 2
Pin 4: Bridge to pin 1 (external)
Pin 5: Output $\mathrm{U}_{\text {out 2 }} 4.5-0.5 \mathrm{~V}$
Pin 6: Not assigned
Pin 7: Ground sensor 2
Pin 8: Ground sensor 1
${ }^{3)}$ The bridge between pin 1 und pin 4 must be set up externally (e. g. in the mating connector). The power supply (pin 7 and pin 8) can be bridged externally (e. g. in the mating connector) in order to reduce the number of cables.

CHARACTERISTIC CURVE OF THE ROTATION
 ANGLE SENSOR

The characteristic curve of the angular position sensor repeats every 120°. The sensor does not therefore have to be installed in the mounting position shown, but can be installed at any offset angle that is a multiple of 120°. This will not affect the behaviour of the connected system in any way. The measuring angle range is 108°. If it is exceeded by up to 6°, the output signal remains at the limit value of the measuring range. If exceeded further, the next section of the characteristic curve is applied. The resulting measuring ranges and zero positions are shown on the graph. The segments of the circle shown in grey represent the angles that cannot be measured.

Ratiometric output signal $\mathrm{U}_{\text {out } 1}$ with power supply 5 V

Output signal $U_{\text {out } 2}=100 \%-U_{\text {out } 1} / \mathrm{Us}[\%]$ (opposite curve)

Absolute output signal $U_{\text {out } 1}$ with power supply 9-32 V

Output signal $\mathrm{U}_{\text {out 2 }}=5 \mathrm{~V}-\mathrm{U}_{\text {out } 1}[\mathrm{~V}]$ (opposite curve)

FUNCTION

Inside the laser-welded polyamide housing (PA66), the rotation of the lever arm is transferred to the rotor and measured by induction. An ASIC (Application Specific Integrated Circuit) accurately computes the rotor position. Various mounting positions are possible thanks to the repeating characteristic curve of the output signal (which depends on the structure of the sensor that is used), which increases the flexibility of the sensor.

RANGE OVERVIEW

Mechanical connection	Angle range	Supply voltage	Output signal	Zero position	Lever arm	Part number
Double sensors						
Socket	-30° to $+30^{\circ}$	5 V or $9-32 \mathrm{~V}$	0.5-4.5 V ratiometric / absolute	$0^{\circ} / 120^{\circ} / 240^{\circ}$	50 mm	6PD 009 583-001
Socket	-54 to $+54^{\circ}$	5 V or $9-32 \mathrm{~V}$	0.5-4.5 V ratiometric / absolute	$0^{\circ} / 120^{\circ} / 240^{\circ}$	50 mm	6PD 009 583-011
Socket	-54 to $+54^{\circ}$	5 V or 9-32V	0.5-4.5 V ratiometric / absolute	$0^{\circ} / 120^{\circ} / 240^{\circ}$	70 mm	6PD 009 580-017
Ball, top	-54 to $+54^{\circ}$	5 V or $9-32 \mathrm{~V}$	0.5-4.5 V ratiometric / absolute	$0^{\circ} / 120^{\circ} / 240^{\circ}$	90 mm	6PD 009 584-017

Head section, left
Type A - ball head screw Rotated 180°

Head section, right Type A - ball head screw

Head section, right Type B - cover cap

Summary of versions

Head section - left	Rotation	Length of connection element	Head section - right	Part number
A	0°	56 mm	A	9XB 732 588-207
A	0°	78.2 mm	A	9XB 732 588-197
A	0°	90 mm	A	9XB 732 588-167
B	0°	120 mm	A	9XB 732 588-237
B	180°	56 mm	A	9XX 736 603-167
A	180°	70 mm	A	9XX 736 603-107
A	180°	90 mm	B	9XX 736 603-117

Technical specifications	
Length (total)	$29.5 \mathrm{~mm} \pm 0.6$
Length (screw)	$14 \mathrm{~mm} \pm 0.3$

